3. MIG-Schweißen

Argon 4.6 ist das Standardschutzgas beim MIG-Schweißen und für alle NE-Werkstoffe geeignet.

Besonders für die gut wärmeleitenden Aluminium- und Kupferwerkstoffe haben sich Zugaben von Helium (VARIGON® He und HeS Reihe) bezüglich Einbrandverbesserung, Porensicherheit bei den Al-Werkstoffen und Schweißgeschwindigkeit als vorteilhaft erwiesen.

Die Schutzgase der VARIGON® HeS Reihe haben einen geringen Zusatz von Sauerstoff zur Verbesserung der Lichtbogenstabilität.

4. WIG-Schweißen

Das Standardschutzgas für das WIG-Schweißen ist Argon 4.6. Für die reaktiven Werkstoffe, wie Titan, Tantal usw. wird die Qualität 4.8 empfohlen.

Durch Zugabe von Wasserstoff (VARIGON® H Reihe) wird die Energie des Lichtbogens erhöht und Einbrand sowie Schweißgeschwindigkeit gesteigert.

Die VARIGON® H Schutzgase dürfen jedoch nur für die austenitischen CrNi-Stähle, Nickel und die Ni-Basis-Werkstoffe verwendet werden.

Für Aluminium und seine Legierungen sowie den Kupferwerkstoffen haben sich Zugaben von Helium zur Erhöhung der Lichtbogenenergie bewährt. Die VARIGON® He Reihe bietet deshalb bei diesen Werkstoffen mit erhöhter Wärmeleitfähigkeit Vorteile im Einbrandverhalten und in der Schweißgeschwindigkeit.

Die VARIGON® S Schutzgase haben einen geringen Zusatz von Sauerstoff zur Verbesserung der Lichtbogenstabilität. Für das Gleichstrom-Minuspol-Schweißen von Al und seinen Legierungen wird VARIGON® He90 benötigt.

5. Plasma-Schweißen

Beim Plasma-Schweißen werden immer 2 Gasströme benötigt. Als Plasmagas wird bevorzugt Argon 4.6 verwendet. Für die Schutzgase haben sich Zumischungen von Wasserstoff für CrNi-Stähle und Nickelwerkstoffe (VARIGON® H Reihe) oder Helium für Aluminium- und Kupferwerkstoffe (VARIGON® He Reihe) bewährt.

6. Formieren

In vielen Fällen ist der Schutz der Schweißnahtwurzel notwendig, z.B. beim Schweißen der nichtrostenden CrNi-Stähle zum Erhalt der Korrosionsbeständigkeit.

Formiergase sind Stickstoff-Wasserstoffgemische. Bei titanstabilisierten Stählen tritt bei Verwendung eine Gelbfärbung der durchgeschweißten Wurzelraupe durch Titannitridbildung auf. Abhilfe schaffen hier Argon oder VARIGON® H Schutzgase. Wurzelschutz kann aber auch bei anderen Werkstoffen erforderlich sein. Bei NE-Metallen wird Argon bevorzugt eingesetzt sowie bei den reaktiven Werkstoffen Titan und Tantal.

Schutzgas	Werkstoff
Argon	alle Werkstoffe
VARIGON® H Reihe	austenitische CrNi-Stähle,
- Ar/H ₂ -Gemische	Ni und Ni-Basis-Werkstoffe
Formiergas	Stähle mit Ausnahme hochfester
- N ₂ /H ₂ -Gemische	Feinkornbaustähle, austenitische
	Stähle (nicht Ti stabilisiert)
VARIGON® N Reihe	austenitische CrNi-Stähle, Duplex-
– Ar/N₂-Gemische	und Super-Duplex-Stähle

Wurzelschutzgase für verschiedene Werkstoffe

7. Metall-Schutzgaslöten

Das Metall-Schutzgaslöten (MSG-Löten) ist ein Verfahren zum Verbinden von dünnen und zwecks Korrosionsschutz beschichteten Blechen. Als Zusatzwerkstoffe kommen CuSi- und CuAl-Legierungen zum Einsatz.

Grundwerkstoff	Schutzgas
Zusatzwerkstoff	
Beschichtete Bleche – CuSi	CRONIGON® 2, CRONIGON® S1
Beschichtete Bleche – CuAl	VARIGON® He und HeS Reihe
Nichtrostender Stahl	VARIGON® He und HeS Reihe

MSG-gelötete Dünnblechkonstruktion

43589567 0408–1.5 Au Änderungen vorbehalter

Tipps für Praktiker.

Gase zum Schweißen und Formieren.

lη	ha	lt٠
ш	Hа	IU:

illidit.
1. Lieferprogramm
2. MAG-Schweißen
3. MIG-Schweißen
4. WIG-Schweißen
5. Plasma-Schweißen
5. Formieren
7. Metall-Schutzgaslöten

Linde Gas GmbH

A-4651 Stadl-Paura, Carl-von-Linde-Platz 1 Telefon +43(0)50.4273, Fax +43(0)50.4273 - 1900 www.linde-gas.at

1. Lieferprogramm

Schutzgas			Zusamm	ensetzun	g				Verfahren/Anwendung							
Linde	Linde	EN 439	Kohlen-	Sauer-	Stick-	Helium	Wasser-	Argon	MAG		MIG WIG/		Wurzel-	Metall-Schu	Metall-Schutzgaslöten	
COMPETENCE LINE™	PERFORMANCE LINE™		dioxid	stoff	stoff		stoff					WP	schutz			
			Vol%	Vol%	Vol%	Vol%	Vol%	Vol%	Un- und niedrig-	Hochlegierte	Aluminium,			Stahl	CrNi-	
									legierte Stähle	Stähle	Kupfer, Nickel			beschichtet	Stahl	
Argon (Ar)		l1						100			•	-	•			
	Helium (He)	12				100					•	•				
Kohlendioxid (CO ₂)		C1	100						•							
CORGON® 10		M21	10					Rest	•							
	CORGON® 10He30	M21 (1)	10			30		Rest	•							
CORGON® 18		M21	18					Rest	•							
	CORGON® 25He25	M21 (1)	25			25		Rest	•							
MISON® 8		S M21 + 0,03NO						Rest	•							
MISON® 18		S M21 + 0,03NO						Rest	•							
CORGON® S5		M22	-	5				Rest	•							
CORGON® S8		M22		8				Rest								
CONTROL SO	CORGON® S3He25	M22 (1)		3,1		25		Rest								
CORGON® 5S4	CONGOIN SSITEZS	M23	5	4				Rest	•							
CORGON® 13S4		M24	13	4				Rest								
CRONIGON® 2		M12	2,5	7				Rest	_	•						
CKONIGON Z	CRONIGON® 2He20	M12 (1)	2			20		Rest		-				_		
-	CRONIGON® 2He50	M12 (1)	2			50		Rest		-						
MISON® 2	CKUNIGUN ZHESU	S M12 + 0,03NO				30		Rest		-						
CRONIGON® S1		M13		1				Rest		-						
CRONIGON® S3		M13												-		
CKOMIGON 23	CDONICON® Nito		0.05	3		20	2	Rest		•	_					
	CRONIGON® Ni10	M11 (1)	0,05			30	2	Rest			•					
	CRONIGON® Ni20	M12 (2)	0,05		-	50		Rest			•					
	CRONIGON® Ni30	S M12 (1) + 5N ₂	0,05		5	5 – 10		Rest			•					
VARIGON® N2		S I1 + 2N ₂			2			Rest				•	•			
VARIGON® N3		S I1 + 3N ₂			3			Rest				•	•			
	VARIGON® N2H1	S R1 + 2N ₂			2		1	Rest				•				
	VARIGON® N2He20	S I3 + 2N ₂			2	20		Rest				•				
	VARIGON® He15	13				15		Rest			•	•		•	•	
	VARIGON® He30	13				30		Rest			•	•				
	VARIGON® He50	13				50		Rest			•	-				
	VARIGON® He70	13				70		Rest			-	-				
	VARIGON® He90	13				90		Rest			•	-				
VARIGON® S		M13		0,03				Rest			•	-				
	VARIGON® He30S	M13 (1)		0,03		30		Rest			•	•		-	•	
MISON® Ar		S I1 + 0,03NO						Rest			•	•				
	MISON® He30	S I3 + 0,03NO				30		Rest			•					
	VARIGON® H2	R1					2	Rest								
	VARIGON® H5 bis H15	R1					5 - 15	Rest					•			
	Formiergas 95/5 – 70/30				Rest		5 - 30									
Stickstoff (N ₂)	<i>J , , , , , , , , , , , , , ,</i>	F1			100											

2. MAG-Schweißen

Für das MAG-Schweißen der Baustähle sind alle Schutzgase der CORGON® Reihe, der PERFORMANCE LINE™, Ar+O₂-Mischungen und CO₂ geeignet. Die Mischgase unterscheiden sich in Schweißverhalten, Schweißdateneinstellung, Nahtformung, Einbrand und Eignung für die Schweißposition. Einige Hinweise gibt die folgende Tabelle:

A	4	1	1 0		
Auswirkung auf	Ar + CO ₂	$Ar + CO_2 + He$	$Ar + O_2$		
	CORGON® Reihe	PERFORMANCE LINE™			
Einbrand					
 Normalposition 	gut	gut	ausreichend gut		
			bei dünnen Blechen		
 Zwangslagen 	sicherer	sicherer	kann kritisch werden		
z.B. Pos. PG	mit mehr CO ₂	mit mehr CO ₂	- Gefahr bei		
oder PC			Badvorlauf		
Oxidationsgrad	fallend mit	fallend mit	Hoch		
(Schlackebildung)	abnehmenden	abnehmenden			
	CO ₂ -Gehalt	CO ₂ -Gehalt			
Porosität	sicherer mit	sicherer mit	am empfindlichsten		
	zunehmendem	zunehmendem			
	CO ₂ -Gehalt	CO ₂ -Gehalt			
Spaltüberbrückbarkeit	besser werdend	verbessert	schlecht		
	mit abnehmendem	durch He-Anteil			
	CO ₂ -Gehalt				
Spritzerauswurf	spritzerärmer mit	spritzerärmer mit	gering		
	abnehmendem	abnehmendem			
	CO ₂ -Gehalt	CO ₂ -Gehalt			
Kerbwirkung am	gering	am geringsten	zunehmend mit		
Nahtübergang			Blechdicke		

Tendenzen beim Einsatz unterschiedlicher Schutzgase beim MAG-Schweißen von un- und niedriglegierten Baustählen

Für das MAG-Schweißen der rostbeständigen CrNi- und Cr-Stähle, der Duplex-Stähle, der Ni-Basis-Werkstoffe und Sonderedelstähle sind die Schutzgase der CRONIGON® Reihe geeignet. Die Schutzgase unterscheiden sich in Schweißverhalten, Schweißdateneinstellung, Nahtformung, Oberflächenoxidation, Einbrand und Eignung für die Schweißposition.

Die CO₂-Gehalte <3 Vol.-% erhöhen die Lichtbogenstabilität, ohne einen unzulässig hohen C-Zubrand im Schweißgut zu bewirken

Mit steigendem He-Anteil wird der Lichtbogen heißer und ist besser für größere Wanddicken und höhere Schweißgeschwindigkeiten geeignet.

Die Schutzgase der CRONIGON® Ni Reihe haben einen abgesenkten Aktivkomponentenanteil und werden vorwiegend für hochkorrosionsbeständige Ni-Basis-Werkstoffe eingesetzt.